On the evolution by fractional mean curvature
نویسندگان
چکیده
منابع مشابه
Neckpinch Singularities in Fractional Mean Curvature Flows
In this paper we consider the evolution of sets by a fractional mean curvature flow. Our main result states that for any dimension n > 2, there exists an embedded surface in R evolving by fractional mean curvature flow, which developes a singularity before it can shrink to a point. When n > 3 this result generalizes the analogue result of Grayson [18] for the classical mean curvature flow. Inte...
متن کاملSolving fractional evolution problem in Colombeau algebra by mean generalized fixed point
The present paper is devoted to the existence and uniqueness result of the fractional evolution equation $D^{q}_c u(t)=g(t,u(t))=Au(t)+f(t)$ for the real $qin (0,1)$ with the initial value $u(0)=u_{0}intilde{R}$, where $tilde{R}$ is the set of all generalized real numbers and $A$ is an operator defined from $mathcal G$ into itself. Here the Caputo fractional derivative $D^{q}_c$ is used i...
متن کاملLevel set approach for fractional mean curvature flows
This paper is concerned with the study of a geometric flow whose law involves a singular integral operator. This operator is used to define a non-local mean curvature of a set. Moreover the associated flow appears in two important applications: dislocation dynamics and phasefield theory for fractional reaction-diffusion equations. It is defined by using the level set method. The main results of...
متن کاملOn the Variation of the Fractional Mean Curvature under the Effect of C1,α Perturbations
In this brief note we study how the fractional mean curvature of order s ∈ (0, 1) varies with respect to C diffeomorphisms. We prove that, if α > s, then the variation under a C diffeomorphism Ψ of the s-mean curvature of a set E is controlled by the C norm of the Jacobian of Ψ. When α = 1 we discuss the stability of these estimates as s → 1− and comment on the consistency of our result with th...
متن کاملHyperbolic flow by mean curvature
A hyperbolic flow by mean curvature equation, l t #cv"i, for the evolution of interfaces is studied. Here v, i and l t are the normal velocity, curvature and normal acceleration of the interface. A crystalline algorithm is developed for the motion of closed convex polygonal curves; such curves may exhibit damped oscillations and their shape appears to rotate during the evolutionary process. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2019
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2019.v27.n1.a6